

Boilermakers and PM_{2.5} Exposures

- Boilermakers build, maintain and repair boilers often located in power plants
- Boilermakers are exposed to PM_{2.5} during welding

 Base metal of Fe, Mn, Si, Cr, Ni
- Welders have increased risk of ischemic heart disease mortality and non-fatal myocardial infarction

(Cavallari, Fang et al. 2010)

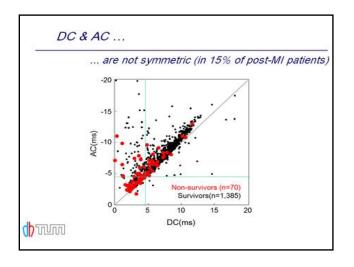
Heart Rate Variability (HRV)

•One proposed biological mechanisms for PM_{2.5} related cardiovascular events includes altered cardiac autonomic response, which is measured by HRV

•HRV is the analysis of the variation in heart periods

•Low HRV is a predictor of poor cardiovascular outcomes

Illustration www.polarusa.com/manuals/RS800/chl1.html


New indices in CV Research

- Acceleration
 Capacity: Variability
 in RR intervals
 before and after
 increase in a heart
 rate
- Deceleration Capacity: Variability in RR intervals before and after slowing in a heart rate

Total State on the Control of the Co

Bauer et al., Lancet 2006;367:1674-81

1

HRV and PM_{2.5}

- Numerous studies report consistent associations between PM_{2.5} air pollution exposures and HRV
- Fewer studies have investigated the association between occupational PM_{2.5} exposures and HRV
 - No effect among vehicle maintenance workers
 - Positive association among patrol troopers
 - Negative association with 4-hr workday PM_{2.5} and short duration HRV among welders

(Pope and Dockery, 2006) (Ried (Cavallari, Fang et al. 2008)

Previous Research

- Short term and intermediate cardiac autonomic health effects of $PM_{2.5}$ using $HRV_{\text{(Cavallari, Eisen et al. 2007,}}$ Cavallari, Eisen et al. 2008, Vallejo, Ruiz et al. 2006, Cavallari, Fang et al. 2010
- Short term effects of PM_{2.5} using on DC (Baeur, Kantelhardt et al. 2006, Guzik, Piskorski et al. 2012)

The Harvard Boilermaker's Cohort

Data collection scheme

Obtained data on Jan. 2010, June 2010, Jan. 2011, June 2011, and June 2012

	Baseline AM (Pre-shift: 0 hr)	Afternoon (Post-shift: 6 hr)
Outcome measurements		
AC and DC	X	
Exposure measurement		
Real-time PM _{2.5} (DustTrak)	XX	

- Demographic, occupational, smoking, medical history from questionnaire
- Information on days since last welded

Table 3-3: Linear regression coefficients (b1) of main effect of Cumulative Exposure Index (mg/m³-years) on acceleration capacity (msec) and deceleration capacity(msec).

	Acceleration Capacity(AC)	Deceleration Capacity(DC)
Parameter	Beta(95% C.I.)	Beta(95% C. I.)
Models		
Model 1	0.65 (-0.05, 1.25)	-0.56 (-1.10, 0.02)
Model 2	1.23 (0.23, 2.69)	-1.07 (-2.06, 0.08)
Model 3	1.26 (0.17, 2.69)	-1.09 (-2.06, 0.12)
Model 4	1.31 (0.14, 2.75)	-1.15 (-2.09, 0.20)

Id values indicate significant correlations (p<0.05)
odel 1: AC or DC = b0 + b1*CEI + e
odel 2: AC or DC = b0 + b1*CEI + b2*Age + e
odel 3: AC or DC = b0 + b1*CEI + b2*Age + b3*TOD + e
odel 4: AC or DC = b0 + b1*CEI + b2*Age + b3*TOD + b4*LWD + e

EH-Cumulative Exposure Index (mg/m3-years) ge=The residual of age on CEI was used to represent the heart age (variation in age not explained by the exposure) DU-III are of Day ECG was taken (AM vs PM) DU-III ast Weld Day

Discussion

- The longer the work PM_{2.5} exposure, the lower the AC and DC at follow up
- Increasing age is a strong predictor of declines in AC and DC at follow up
 - There is a potential for cardiac autonomic effects even among the young and healthy

Strengths

- √ Tease out long term effects from short term effects
- ✓ Reduced misclassification of outcome variable
- ✓ Detailed work history data

Limitations

11

- ❖ Potential misclassification of Chronic exposure index
- ❖ We could not adjust for baseline AC and DC prior to recruitment

12

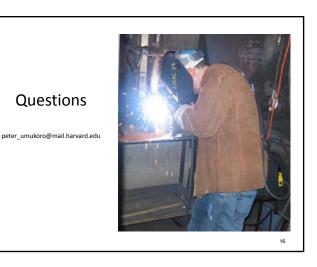
Summary/Implications

- Long term PM_{2.5} exposure decreases AC and may also decrease DC.
- Welding fume exposures adversely affects cardiovascular health
- Until the toxic component(s) of PM are identified and eliminated, exposure to occupational PM should be minimized

13

Acknowledgments

- Research Committee
 David Christiani (Advisor)
 Xihong Lin
 Alex Lu
- Research Team
 Shona Fang
 JC Chen
 Angela Tiateng
 Jason Wong
 Jinming Zhang
 Li Su
 Mike Wang


Support provided by NIEHS R01ES009860, P50ES00002, ES009860 and ES00002

Harvard NIOSH ERC

Others – Family, Faculty, Colleagues, etc Leventis Fellowship

14

