
Lindsay Hamilton, MPH
CDC/CSTE Applied Epidemiology Fellow
New Jersey Department of Health

Objectives

- Participants will...
 1. Understand the threat of CRE and usefulness of having CRE surveillance
 2. Gain insight into CRE incidence and laboratory practices in New Jersey

Danger of CRE

- Nationally, carbapenem-resistant Enterobacteriaceae (CRE) infections are estimated to have 50% mortality or higher, based on underlying conditions and length of stay
- CRE detected in approximately 5% of acute care hospitals in the US (using CLABSI and CAUTI date from NHSN)
 ▪ This percentage is estimated to be 10% in Northeastern states
- CDC’s latest Vital Signs (Aug 2015), outlined the need for a coordinated facility approach

CRE in the Media

- California outbreak highlights problem of antibiotic resistance
- National summary data
- CDC has become resistant to all or nearly all available antibiotics
- Executive Order - Combating Antibiotic-Resistant Bacteria
• Carbapenem-Resistant Enterobacteriaceae are gram negative family of bacteria
 ▫ Includes many species including the more notable Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Serratia spp., and Proteus spp.

• CRE are either resistant to carbapenem antibiotics or produce an enzyme that destroys it (carbapenemase)
 ▫ There are 11 or more types of carbapenemases found in carbapenemase-producing CRE (CP-CRE)
 ▫ The two most problematic in the US are KPC (Klebsiella pneumoniae carbapenemase) and NDM (New Delhi Metallo-beta-lactamase)

Background on CRE

Spread of CRE
• KPC and NDM are spreading across US, as are others like OXA-48 (an OXA-type carbapenemase) and VIM (Verona Integron-Mediated Metallo-beta-lactamase)

Methods
• Survey was developed in Hippocrates, a NJ-specific application aimed at capturing, managing, displaying, and disseminating health information

Methods
• Survey question topics included: susceptibility testing practices and cutoffs used, known or estimated rate of CRE positive isolates, species isolated, and notification of clinical team

Methods
• Survey was sent electronically to all acute care hospital laboratory directors and supervisors
 ▫ Distribution list provided by NJ Public Health and Environmental Laboratories

Methods
• Survey results were exported and summarized in Microsoft Excel 2010 and SAS 9.3
Survey had a 78% response rate with 56 out of 72 acute care hospitals participating.

Forty-one hospitals performed their own susceptibility testing.
- Fifteen others used commercial labs or affiliated hospital labs.

For the testing criteria, 30 hospitals used non-susceptibility to one or more carbapenems AND resistance to all third-generation cephalosporins.
- 15 hospitals used just non-susceptibility to one or more carbapenem.

Results-Susceptibility Cutoffs Utilized

- **CLSI 2012 through 2014 (M100-S22 through M100-S24):** 3 (9%)
- **CLSI 2009 (M100-S19):** 20 (56%)
- **CLSI 2010 through 2011 (M100-S20 through M100-S21):** 28 (50%)
- **Other/Unknown:** 5 (15%)

Results-Reason for Sample Collection

- **Clinical:** 45 (80%)
- **Clinical and Screening:** 7 (13%)
- **Other/Unknown:** 4 (7%)
Results-Test Type

- For specific types of tests used, the most common culture test was **Modified Hodge** test, and the most common non-DNA assay was the **Vitek 2** testing system.

![Chart showing test types](image)

Results-Rate and Organisms

- Median estimated rate of CRE in NJ in hospitalized patients tested was **1.31%** (Range=0-7%)

![Bar chart showing CRE rate](image)

- The top 3 bacteria for CRE positive isolates were **Klebsiella spp., Enterobacter spp., and Escheria coli**

![Map showing CRE rates by county](image)
Results-Capacity and Communication

- There were 33 (59%) hospitals that had PCR testing capabilities, which is relevant for future testing of carbapenemase production
- There were 19 (34%) hospitals that currently tested for carbapenemase production, although not all the time
- There were 50 (89%) hospitals that had a protocol for informing someone on the clinical team
 - Of those, 34 (68%) of informed the infection preventionist (IP) or nursing team

Limitations

- Not all hospitals knew their numerator and denominator data, so about 52% of hospitals had to estimate their CRE rate
- Possible volunteer bias
- Possible misclassification bias due to varied susceptibility cutoffs used

Conclusion

- This survey was the first study to assess CRE rates and testing in New Jersey
- Hospitals can also compare where they stand in their testing practices and capabilities when the results of the survey are disseminated back to the NJ hospitals
- NJDOH is more informed of the species to consider for future CRE reporting considerations

Next Steps

- NJDOH is now in the process of sending out a second survey directed at acute care hospital IPs
 - This survey will be aimed at assessing common practice for CRE positive patients and also other cases of resistant organisms
- Together with the lab survey results, NJDOH will gain a more complete preliminary picture of hospital practice and prevention of CRE and other resistant organism infections
- Further studies should be conducted for more reliable and accurate results
Acknowledgments

• I would like to acknowledge my mentors, Edward Lifshitz and Rebecca Greeley, and NJ PHEL for helping develop and distribute the survey.

• This study/report was supported in part by an appointment to the Applied Epidemiology Fellowship Program administered by the Council of State and Territorial Epidemiologists (CSTE) and funded by the Centers for Disease Control and Prevention (CDC) Cooperative Agreement Number 1U38OT000143-03.

Questions?

Lindsay Hamilton
New Jersey Department of Health
Lindsay.hamilton@doh.state.nj.us
609-826-5964